Demonstração da derivada da potência
Demonstração da derivada da potência
Neste post apresenta-se a Demonstração da derivada da potência, que consiste nas funções do tipo onde n é um número natural.
Fazendo o uso da definição formal de derivadas dada por:
,
obtém-se a seguinte expressão:
.
Expandindo o termo através do binômio de Newton tem-se uma soma de termos da forma:
,
onde é uma combinação simples, dada por .
Simplificando alguns termos deste limite fica-se com:
,
o primeiro e último termo se cancelam, assim:
.
Em seguida pode-se simplificar os “h”, visto que todos os termos do numerador e o denominador os contém , então:
.
Aplicando o limite tem-se:
.
Sabendo que fica-se com:
.
Publicado em 03/11/2016, em
Derivadas.